Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[I = \int_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} d x\]
\[ \Rightarrow I = \int_1^4 \left| x - 1 \right| d x + \int_1^4 \left| x - 2 \right| d x + \int_1^4 \left| x - 4 \right| d x\]
\[\text{We know that}, \left| x - 1 \right| = \begin{cases} - \left( x - 1 \right) &,& x \leq 1\\x - 1&,& 1 < x \leq 4\end{cases}\]
\[\left| x - 2 \right| = \begin{cases} - \left( x - 2 \right) &,& 1 \leq x \leq 2\\x - 2&,& 2 < x \leq 4\end{cases}\]
\[\left| x - 4 \right| = \begin{cases} - \left( x - 4 \right) &,& 1 \leq x \leq 4\\x - 4&,& x > 4\end{cases}\]
\[ \therefore I = \int_1^4 \left( x - 1 \right) d x - \int_1^2 \left( x - 2 \right) d x + \int_2^4 \left( x - 2 \right) d x - \int_1^4 \left( x - 4 \right) d x\]
\[ \Rightarrow I = \left[ \frac{x^2}{2} - x \right]_1^4 - \left[ \frac{x^2}{2} - 2x \right]_1^2 + \left[ \frac{x^2}{2} - 2x \right]_2^4 - \left[ \frac{x^2}{2} - 4x \right]_1^4 \]
\[ \Rightarrow I = 8 - 4 - \frac{1}{2} + 1 - \left( 2 - 4 - \frac{1}{2} + 2 \right) + 8 - 8 - 2 + 4 - \left( 8 - 16 - \frac{1}{2} + 4 \right)\]
\[ \Rightarrow I = \frac{23}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate :
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is