Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_0^\frac{\pi}{2} \left| \cos 2x \right| d x\]
\[\text{We know that}, \left| \cos 2x \right| = \begin{cases} - \cos 2x &,& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\\\cos 2x&,& 0 < x \leq \frac{\pi}{4}\end{cases}\]
\[ \therefore I = \int_{- 2}^2 \left| \cos 2x \right| d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \cos 2x dx - \int_\frac{\pi}{4}^\frac{\pi}{2} \cos 2x dx\]
\[ \Rightarrow I = \left[ \frac{\sin 2x}{2} \right]_0^\frac{\pi}{4} - \left[ \frac{\sin 2x}{2} \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{1}{2} - 0 - 0 + \frac{1}{2}\]
\[ \Rightarrow I = 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`