Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I }=\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx...............(1)\]
Then,
\[I = \int_0^\frac{\pi}{2} \frac{a\sin\left( \frac{\pi}{2} - x \right) + b\cos\left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)}dx ...................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[= \int_0^\frac{\pi}{2} \frac{a\cos x + b\sin x}{\cos x + \sin x}dx................(2)\]
Adding (1) and (2), we get
\[2I = \int_0^\frac{\pi}{2} \left( \frac{a\sin x + b\cos x}{\cos x + \sin x} + \frac{a\cos x + b\sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \left( \frac{a\sin x + b\cos x + a\cos x + b\sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \frac{\left( a + b \right)\sin x + \left( a + b \right)\cos x}{\sin x + \cos x}dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \frac{\left( a + b \right)\left( \sin x + \cos x \right)}{\sin x + \cos x}dx\]
\[\Rightarrow 2I = \int_0^\frac{\pi}{2} \left( a + b \right)dx\]
\[ \Rightarrow 2I = \left( a + b \right) \times \left.x\right|_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \left( a + b \right) \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow 2I = \frac{\pi}{2}\left( a + b \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a + b \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`