मराठी

Evaluate the Following Integral: ∫ π 2 0 a Sin X + B Sin X Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 

बेरीज

उत्तर

\[\text{Let I }=\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx...............(1)\]

Then,

\[I = \int_0^\frac{\pi}{2} \frac{a\sin\left( \frac{\pi}{2} - x \right) + b\cos\left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)}dx ...................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]

\[= \int_0^\frac{\pi}{2} \frac{a\cos x + b\sin x}{\cos x + \sin x}dx................(2)\]

Adding (1) and (2), we get

\[2I = \int_0^\frac{\pi}{2} \left( \frac{a\sin x + b\cos x}{\cos x + \sin x} + \frac{a\cos x + b\sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \left( \frac{a\sin x + b\cos x + a\cos x + b\sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \frac{\left( a + b \right)\sin x + \left( a + b \right)\cos x}{\sin x + \cos x}dx\]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} \frac{\left( a + b \right)\left( \sin x + \cos x \right)}{\sin x + \cos x}dx\]

\[\Rightarrow 2I = \int_0^\frac{\pi}{2} \left( a + b \right)dx\]
\[ \Rightarrow 2I = \left( a + b \right) \times \left.x\right|_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \left( a + b \right) \times \left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow 2I = \frac{\pi}{2}\left( a + b \right)\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a + b \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 39 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x^2e^x dx` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×