मराठी

Evaluate: π / 2 ∫ 0 X Sin X Cos X Sin 4 X + Cos 4 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .

उत्तर

\[Let I = \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x}dx . \]

\[\text{ Then we have }: \]

\[I = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)}dx\]

\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - I\]

\[\Rightarrow 2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx\]

 Dividing the numerator and the denominator of RHS by cos4x, we have:

\[2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\tan x se c^2 x}{1 + \tan^4 x} dx\]

\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \tan^4 x} dx\]

\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \left( \tan^2 x \right)^2} dx\]

\[\text { Put} t = \tan^2 x\]

\[ \Rightarrow dt = 2\tan x se c^2 x dx\]

\[\text { When } x \to 0, t \to 0\]

\[\text { When } x \to \frac{\pi}{2}, t \to \infty\]

\[\therefore 2I = \frac{\pi}{4} \int_0^\infty \frac{1}{1 + t^2} dt\]

\[\Rightarrow 2I = \frac{\pi}{4} \left[ \tan^{- 1} \left( t \right) \right]_0^\infty \]

\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( 0 \right) \right]\]

\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \frac{\pi}{2} \right] = \frac{\pi^2}{8}\]

\[ \Rightarrow I = \frac{\pi^2}{16}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×