Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
उत्तर
\[Let I = \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x}dx . \]
\[\text{ Then we have }: \]
\[I = \int_0^\frac{\pi}{2} \frac{\left( \frac{\pi}{2} - x \right)\sin\left( \frac{\pi}{2} - x \right) \cos\left( \frac{\pi}{2} - x \right)}{\sin^4 \left( \frac{\pi}{2} - x \right) + \cos^4 \left( \frac{\pi}{2} - x \right)}dx\]
\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - \int_0^\frac{\pi}{2} \frac{x\sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\Rightarrow I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx - I\]
\[\Rightarrow 2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x}dx\]
Dividing the numerator and the denominator of RHS by cos4x, we have:
\[2I = \frac{\pi}{2} \int_0^\frac{\pi}{2} \frac{\tan x se c^2 x}{1 + \tan^4 x} dx\]
\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \tan^4 x} dx\]
\[\Rightarrow 2I = \frac{\pi}{4} \int_0^\frac{\pi}{2} \frac{2\tan x se c^2 x}{1 + \left( \tan^2 x \right)^2} dx\]
\[\text { Put} t = \tan^2 x\]
\[ \Rightarrow dt = 2\tan x se c^2 x dx\]
\[\text { When } x \to 0, t \to 0\]
\[\text { When } x \to \frac{\pi}{2}, t \to \infty\]
\[\therefore 2I = \frac{\pi}{4} \int_0^\infty \frac{1}{1 + t^2} dt\]
\[\Rightarrow 2I = \frac{\pi}{4} \left[ \tan^{- 1} \left( t \right) \right]_0^\infty \]
\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \tan^{- 1} \left( \infty \right) - \tan^{- 1} \left( 0 \right) \right]\]
\[ \Rightarrow 2I = \frac{\pi}{4}\left[ \frac{\pi}{2} \right] = \frac{\pi^2}{8}\]
\[ \Rightarrow I = \frac{\pi^2}{16}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`