Advertisements
Advertisements
प्रश्न
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
उत्तर
`int (1 + cosx)/(sin^2x)dx`
= `int (1/(sin^2x) + cosx/(sin^2x))dx`
= `int ("cosec"^2x + cot x "cosec" x)dx`
= `int "cosec"^2x dx + int cot x "cosec" x dx`
= – cot x – cosec x + C.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`