मराठी

Evaluate the Following Definite Integral: ∫ 1 0 1 √ ( X − 1 ) ( 2 − X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
बेरीज

उत्तर

Let I =
\[\int_1^2 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
Put
\[x = \cos^2 \theta + 2 \sin^2 \theta\]
`thereforedx=2costheta(-sintheta)dtheta+4sinthetacostheta d theta=2sinthetacostheta d theta`
Also,
\[x = \cos^2 \theta + 2 \sin^2 \theta\]
\[ \Rightarrow x = 1 + \sin^2 \theta\]
\[ \Rightarrow \sin\theta = \sqrt{x - 1}\]
When `xrarr1, sinthetararr0" or "thetararr0`
When \[x \to 2, \sin\theta \to 1\text{ or }\theta \to \frac{\pi}{2}\]
`therefore I = `\[\int_1^2 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
\[\Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\left( \cos^2 \theta + 2 \sin^2 \theta - 1 \right)\left( 2 - \cos^2 \theta - 2 \sin^2 \theta \right)}}\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\sin^2 \theta \cos^2 \theta}} ...................\left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\ theta\cos\theta  d\theta}{\sin\theta\cos\theta}\]
\[ \Rightarrow I = 2 \int_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow I = 2\theta |_0^\frac{\pi}{2}\]
\[\Rightarrow I = 2\left( \frac{\pi}{2} - 0 \right) = \pi\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 59 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


Find: `int (dx)/sqrt(3 - 2x - x^2)`


`int_0^1 x^2e^x dx` = ______.


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×