Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
उत्तर
\[ \Rightarrow x = 1 + \sin^2 \theta\]
\[ \Rightarrow \sin\theta = \sqrt{x - 1}\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\sin^2 \theta \cos^2 \theta}} ...................\left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\ theta\cos\theta d\theta}{\sin\theta\cos\theta}\]
\[ \Rightarrow I = 2 \int_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow I = 2\theta |_0^\frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Find: `int (dx)/sqrt(3 - 2x - x^2)`
`int_0^1 x^2e^x dx` = ______.
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.