Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I \int_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) d\ x\ . Then, \]
\[I = \int_1^2 e^{2x} \frac{1}{x} - \int_1^2 e^{2x} \frac{1}{2 x^2} dx\]
\[\text{Integrating first term by parts}\]
\[ \Rightarrow I = \left\{ \left[ \frac{e^{2x}}{2x} \right]_1^2 - \int_1^2 - e^{2x} \frac{1}{2 x^2} \right\} - \int_1^2 e^{2x} \frac{1}{2 x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^{2x}}{2x} \right]_1^2 \]
\[ \Rightarrow I = \frac{e^4}{4} - \frac{e^2}{2}\]
\[ \Rightarrow I = \frac{e^4 - 2 e^2}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Prove that:
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.