Advertisements
Advertisements
प्रश्न
The value of `int_2^3 x/(x^2 + 1)`dx is ______.
पर्याय
`log 4`
`log 3/2`
`1/2 log2`
`log 9/4`
उत्तर
The value of `int_2^3 x/(x^2 + 1)`dx is `underline(bb(1/2 log 2))`.
Explanation:
`int_2^3 x/(x^2 + 1) = 1/2 [log(x^2 + 1)]_2^3`
= `1/2 (log 10 - log 5)`
= `1/2 log (10/5)`
= `1/2 log 2`
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(2a − x) = −f(x), prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Find: `int logx/(1 + log x)^2 dx`