Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^2 \frac{1}{4 + x - x^2}\ d\ x\ . Then, \]
\[I = - \int_0^2 \frac{1}{x^2 - x - 4} d x\]
\[ \Rightarrow I = - \int_0^2 \frac{1}{\left( x^2 - x + \frac{1}{4} \right) - \frac{1}{4} - 4} d\ x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \frac{17}{4}} d x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \int_0^2 \frac{1}{- \left( \frac{2x - 1}{2} \right)^2 + \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \frac{1}{\sqrt{17}} \left[ \log \left( \frac{\sqrt{17} + 2x - 1}{\sqrt{17} - 2x + 1} \right) \right]_0^2 \]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{\sqrt{17} + 3}{\sqrt{17} - 3} - \log \frac{\sqrt{17} - 1}{\sqrt{17} + 1} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{26 + 6\sqrt{17}}{8} - \log \frac{18 - 2\sqrt{17}}{16} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \times \frac{18 + 2\sqrt{17}}{18 + 2\sqrt{17}} \right\}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{1344 + 320\sqrt{17}}{256}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{21 + 5\sqrt{17}}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`