Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^2 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{1 - \cos2x}{2} dx\]
\[ = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 1 - \cos2x \right)dx\]
\[ = \frac{1}{2} \left[ x - \frac{\sin2x}{2} \right]_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 + \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`