Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^1 \left\{ x \right\} dx\]
\[\text{We know} \left\{ x \right\} = x, 0 < x < 1\]
\[ \therefore I = \int\limits_0^1 x\ dx\]
\[ = \left[ \frac{x^2}{2} \right]_0^1 \]
\[ = \frac{1}{2} - \frac{0}{2}\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.