Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
उत्तर
\[I = \int_0^1 ( \cos^{- 1} x )^2 d x\]
\[\text{let }co s^{- 1} x = \theta\]
\[ \Rightarrow x = \cos\theta\]
\[ \Rightarrow dx = - \sin\theta d\theta\]
\[\text{when }x = 0, \theta = \frac{\pi}{2}\text{ and when }x = 1, \theta = 0\]
\[\text{Therefore, }I = \int_\frac{\pi}{2}^0 \theta^2 ( - \sin\theta) d \theta \]
\[I = - \int_\frac{\pi}{2}^0 \theta^2 (sin\theta) d \theta\]
\[I = \int_0^\frac{\pi}{2} \theta^2 (sin\theta) d \theta\]
\[I = \left[ \theta^2 ( - cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta \int_0^\frac{\pi}{2} \sin\theta d \theta\]
\[I = \left[ \theta^2 ( - \cos\theta) \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2\theta( - \cos\theta) d \theta\]
\[= [ - \theta^2 \cos\theta ]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} 2\theta(\cos\theta)d\theta\]
\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta\sin\theta - \int_0^\frac{\pi}{2} \sin\theta d\theta]\]
\[ = [ - \theta^2 cos\theta ]_0^\frac{\pi}{2} + 2[\theta sin\theta + \cos\theta ]_0^\frac{\pi}{2} \]
\[I = 2\left[\left(\frac{\pi}{2} + 0\right) - 1\right] \]
\[I = \pi - 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
`int x^3/(x + 1)` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.