Advertisements
Advertisements
प्रश्न
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
उत्तर
\[Let, I = \int_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} d x ...................(1)\]
\[ = \int_2^3 \frac{\sqrt{5 - x}}{\sqrt{5 - 5 + x} + \sqrt{5 - x}} d x \]
\[ = \int_2^3 \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} d x ...................(2)\]
Adding (1) and (2)
\[ 2I = \int_2^3 \left[ \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} + \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} \right] d x\]
\[ = \int_2^3 \frac{\sqrt{5 - x} + \sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[ = \int_2^3 dx \]
\[ = \left[ x \right]_2^3 \]
\[ = 3 - 1 = 1\]
\[Hence, I = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`