मराठी

Π / 2 ∫ 0 Sin 2 X Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]

बेरीज

उत्तर

We have,

\[I = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\sin x + \cos x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\cos x + \sin x} dx ................(2)\]

Adding (1) and (2)

\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sin^2 x}{\sin x + \cos x} + \frac{\cos^2 x}{\cos x + \sin x} \right] d x\]

\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right] dx\]

\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} \right] dx\]

\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to 1\]

\[ \therefore 2I = \int_0^1 \frac{2dt}{2t + 1 - t^2} dx\]

\[ = 2 \int_0^1 \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]

\[ = \frac{2}{2\sqrt{2}} \left[ \log\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| \right]_0^1 \]

\[ = \frac{1}{\sqrt{2}}\left[ \log\left( \frac{\sqrt{2}}{\sqrt{2}} \right) - log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right] \]

\[ = \frac{1}{\sqrt{2}}\left[ 0 - \log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right]\]

\[ = - \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right|\]

\[ = \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right|\]

\[ = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]

\[2I = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{2 - 1} \right]\]

\[2I = \frac{2}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]

\[\text{Hence }I = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 53 | पृष्ठ १२२

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×