Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
उत्तर
We have,
\[I = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\sin x + \cos x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\cos x + \sin x} dx ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sin^2 x}{\sin x + \cos x} + \frac{\cos^2 x}{\cos x + \sin x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore 2I = \int_0^1 \frac{2dt}{2t + 1 - t^2} dx\]
\[ = 2 \int_0^1 \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]
\[ = \frac{2}{2\sqrt{2}} \left[ \log\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| \right]_0^1 \]
\[ = \frac{1}{\sqrt{2}}\left[ \log\left( \frac{\sqrt{2}}{\sqrt{2}} \right) - log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right] \]
\[ = \frac{1}{\sqrt{2}}\left[ 0 - \log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right]\]
\[ = - \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right|\]
\[ = \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right|\]
\[ = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]
\[2I = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{2 - 1} \right]\]
\[2I = \frac{2}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
\[\text{Hence }I = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.