Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^3 x\ d x\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x \sin^2 x\ dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x\left( 1 - \cos^2 x \right) dx\]
\[Let\ \cos x = t, then - \sin x\ dx = dt, \]
\[When\, x \to - \frac{\pi}{2} ; t \to 0\ and\ x \to \frac{\pi}{2} ; t \to 0\]
\[I = \int_0^0 \left( - 1 + t^2 \right) dt\]
\[\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate :
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`