मराठी

Π / 2 ∫ − π / 2 Sin 3 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

उत्तर

\[Let I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin^3 x\ d x\]

\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x \sin^2 x\ dx\]

\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \sin x\left( 1 - \cos^2 x \right) dx\]

\[Let\ \cos x = t, then - \sin x\ dx = dt, \]

\[When\, x \to - \frac{\pi}{2} ; t \to 0\ and\ x \to \frac{\pi}{2} ; t \to 0\]

\[I = \int_0^0 \left( - 1 + t^2 \right) dt\]

\[\]

\[ = 0\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Very Short Answers [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Very Short Answers | Q 5 | पृष्ठ १११

संबंधित प्रश्‍न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×