Advertisements
Advertisements
प्रश्न
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
पर्याय
- \[\frac{\pi}{2}\]
- \[\frac{1}{2}\]
- \[\frac{\pi}{4}\]
1
उत्तर
\[\int_0^\alpha \frac{1}{1 + 4 x^2} d x = \frac{\pi}{8}\]
\[ \Rightarrow \int_0^\alpha \frac{1}{1 + \left( 2x \right)^2} d x = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \left[ \tan^{- 1} 2x \right]_0^\alpha = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \tan^{- 1} 2\alpha = \frac{\pi}{8}\]
\[ \Rightarrow 2\alpha = \tan\frac{\pi}{4}\]
\[ \Rightarrow 2\alpha = 1\]
\[ \therefore \alpha = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`