Advertisements
Advertisements
प्रश्न
उत्तर
Consider
Now,
\[\therefore \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
\[ = 2 \int_0^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx ................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
\[ = 2 \int_0^\frac{\pi}{2} \left( 2\sin x + \cos x \right)dx ......................\left[ \left| x \right| = \begin{cases}x, & \text{if }x \geq 0 \\ - x, & \text{if }x < 0\end{cases} \right]\]
\[ = 4 \int_0^\frac{\pi}{2} \sin x\ dx + 2 \int_0^\frac{\pi}{2} \cos x\ dx\]
\[= \left.4 \times \left( - \cos x \right)\right|_0^\frac{\pi}{2} + \left.2 \times \sin x\right|_0^\frac{\pi}{2} \]
\[ = - 4\left( \cos\frac{\pi}{2} - \cos0 \right) + 2\left( \sin\frac{\pi}{2} - \sin0 \right)\]
\[ = - 4\left( 0 - 1 \right) + 2\left( 1 - 0 \right)\]
\[ = 4 + 2\]
\[ = 6\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`