मराठी

Π ∫ 0 X a 2 − Cos 2 X D X , a > 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]

बेरीज

उत्तर

\[Let I = \int_0^\pi \frac{x}{a^2 - \cos^2 x} d x ..............(1)\]

\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 \left( \pi - x \right)} d x \]

\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 x} d x ...............(2)\]

Adding (1) and (2)

\[2I = \int_0^\pi \frac{\pi}{a^2 - \cos^2 x} d x \]

\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{1}{a - cosx} + \frac{1}{a + cosx} \right] dx\]

\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{\sec^2 \frac{x}{2}}{\left( a - 1 \right) + \left( a + 1 \right) \tan^2 \frac{x}{2}} + \frac{\sec^2 \frac{x}{2}}{\left( a + 1 \right) + \left( a - 1 \right) \tan^2 \frac{x}{2}} \right]dx\]

\[Let, \tan\frac{x}{2} = t, then \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]

\[2I = \frac{\pi}{a} \int_0^\infty \left[ \frac{1}{\left( a - 1 \right) + \left( a + 1 \right) t^2} + \frac{1}{\left( a + 1 \right) + \left( a - 1 \right) t^2} \right] dt\]

\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}} \left[ \tan^{- 1} \sqrt{\frac{a + 1}{a - 1}}t + \tan^{- 1} \sqrt{\frac{a - 1}{a + 1}}t \right]_0^\infty \]

\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]

\[ = \frac{\pi^2}{a\sqrt{\left( a^2 - 1 \right)}}\]

\[ \therefore I = \frac{\pi^2}{2a\sqrt{\left( a^2 - 1 \right)}}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Revision Exercise | Q 50 | पृष्ठ १२२

संबंधित प्रश्‍न

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×