Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
उत्तर
\[Let I = \int_0^\pi \frac{x}{a^2 - \cos^2 x} d x ..............(1)\]
\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 \left( \pi - x \right)} d x \]
\[ = \int_0^\pi \frac{\pi - x}{a^2 - \cos^2 x} d x ...............(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \frac{\pi}{a^2 - \cos^2 x} d x \]
\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{1}{a - cosx} + \frac{1}{a + cosx} \right] dx\]
\[ = \frac{\pi}{2a} \int_0^\pi \left[ \frac{\sec^2 \frac{x}{2}}{\left( a - 1 \right) + \left( a + 1 \right) \tan^2 \frac{x}{2}} + \frac{\sec^2 \frac{x}{2}}{\left( a + 1 \right) + \left( a - 1 \right) \tan^2 \frac{x}{2}} \right]dx\]
\[Let, \tan\frac{x}{2} = t, then \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[2I = \frac{\pi}{a} \int_0^\infty \left[ \frac{1}{\left( a - 1 \right) + \left( a + 1 \right) t^2} + \frac{1}{\left( a + 1 \right) + \left( a - 1 \right) t^2} \right] dt\]
\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}} \left[ \tan^{- 1} \sqrt{\frac{a + 1}{a - 1}}t + \tan^{- 1} \sqrt{\frac{a - 1}{a + 1}}t \right]_0^\infty \]
\[ = \frac{\pi}{a\sqrt{\left( a^2 - 1 \right)}}\left[ \frac{\pi}{2} + \frac{\pi}{2} \right]\]
\[ = \frac{\pi^2}{a\sqrt{\left( a^2 - 1 \right)}}\]
\[ \therefore I = \frac{\pi^2}{2a\sqrt{\left( a^2 - 1 \right)}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`