Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
उत्तर
Let I = \[\int\frac{dx}{\sin^2 x \cos^2 x}\]
Dividing the numerator and denominator by cos4 x, we get:
I = \[\int\frac{se c^2 x \cdot se c^2 x}{\tan^2 x}dx\]
\[\int\frac{\left( 1 + \tan^2 x \right) \cdot se c^2 x}{\tan^2 x}dx\]
Put tan x = t
⇒ \[se c^2 xdx = dt\]
∴ I = \[\int\frac{1 + t^2}{t^2}dt\] = \[\int1dt + \int\frac{1}{t^2}dt\]
⇒ I = t −\[\frac{1}{t}\] + C
⇒ I = tan x − cot x + C
∴ \[\int\frac{dx}{\sin^2 x \cos^2 x}\] = tan x − cot x + C
APPEARS IN
संबंधित प्रश्न
Solve each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`