मराठी

Evaluate : ∫ D X Sin 2 X Cos 2 X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .

उत्तर

Let I = \[\int\frac{dx}{\sin^2 x \cos^2 x}\]

Dividing the numerator and denominator by cos4 x, we get:

I = \[\int\frac{se c^2 x \cdot se c^2 x}{\tan^2 x}dx\]

\[\int\frac{\left( 1 + \tan^2 x \right) \cdot se c^2 x}{\tan^2 x}dx\]

Put tan x = t

⇒ \[se c^2 xdx = dt\]

∴ I = \[\int\frac{1 + t^2}{t^2}dt\] = \[\int1dt + \int\frac{1}{t^2}dt\]

⇒ I = t −\[\frac{1}{t}\] + C

⇒ I = tan x − cot x + C

∴ \[\int\frac{dx}{\sin^2 x \cos^2 x}\] = tan x − cot x + C

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 1

संबंधित प्रश्‍न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×