Advertisements
Advertisements
प्रश्न
\[\int\limits_{- 1}^1 e^{2x} dx\]
उत्तर
\[\text{Here }a = - 1, b = 1, f\left( x \right) = e^{2x} , h = \frac{1 + 1}{n} = \frac{2}{n}\]
Therefore,
\[ \int_{- 1}^1 e^{2x} d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( - 1 \right) + f\left( - 1 + h \right) + . . . . . . . . . . + f\left( - 1 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ e^{- 2} + e^{2\left( - 1 + h \right)} + e^{2\left( - 1 + 2h \right)} + . . . . . . . + e^{2\left( - 1 + \left( n - 1 \right)h \right)} \right]\]
\[ = \lim_{h \to 0} h e^{- 2} \left[ \frac{\left( e^{2h} \right)^n - 1}{e^{2h} - 1} \right]\]
\[ = \lim_{h \to 0} e^{- 2} \left[ \frac{e^4 - 1}{\frac{e^{2h} - 1}{2h}} \right] \times \frac{1}{2} .......................\left(\text{Since, nh = 2 }\right)\]
\[ = \frac{1}{2}\left( e^2 - e^{- 2} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
`Γ (9/2)`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.