Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
उत्तर
\[\int_0^\frac{\pi}{4} \cos^4 x \sin^3 x d x\]
\[ = \int_0^\frac{\pi}{4} \cos^4 x \sin x \left( 1 - \cos^2 x \right) dx\]
\[ = \int_0^\frac{\pi}{4} \cos^4 x \sin x dx - \int_0^\frac{\pi}{4} \cos^6 x \sin x dx\]
\[ = - \left[ \frac{\cos^5 x}{5} \right]_0^\frac{\pi}{4} + \left[ \frac{\cos^7 x}{7} \right]_0^\frac{\pi}{4} \]
\[ = \frac{- 1}{20\sqrt{2}} + \frac{1}{5} + \frac{1}{56\sqrt{2}} - \frac{1}{7}\]
\[ = \frac{- \sqrt{2}}{40} + \frac{2}{35} + \frac{\sqrt{2}}{112}\]
\[ = \frac{2}{35} - \frac{9\sqrt{2}}{560}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
Γ(1) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`