Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]
\[ = \int_0^{\pi/2} \frac{x + \sin x}{2 \cos^2 \frac{x}{2}} dx\]
\[ = \int_0^{\pi/2} \left[ \frac{x}{2 \cos^2 \frac{x}{2}} + \frac{\sin x}{2 \cos^2 \frac{x}{2}} \right]dx\]
\[ = \frac{1}{2} \int_0^{\pi/2} x se c^2 \frac{x}{2}dx + \int_0^{\pi/2} \frac{2\sin \frac{x}{2}\cos\frac{x}{2}}{2 \cos^2 \frac{x}{2}}dx\]
\[ = \frac{1}{2} \left[ x \frac{\tan\frac{x}{2}}{\frac{1}{2}} \right]_0^{\pi/2} - \frac{1}{2} \int_0^{\pi/2} \frac{\tan\frac{x}{2}}{\frac{1}{2}}dx + \int_0^{\pi/2} \tan\frac{x}{2}dx\]
\[ = \left[ x \tan\frac{x}{2} \right]_0^{\pi/2} - \int_0^{\pi/2} \tan\frac{x}{2} dx + \int_0^{\pi/2} \tan\frac{x}{2}dx\]
\[ = \left[ \frac{\pi}{2} \tan\frac{\pi}{4} \right]\]
\[ = \frac{\pi}{2} \times 1\]
\[ = \frac{\pi}{2} \]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`