Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
\[Consider\, x^2 = a^2 \cos2\theta\]
\[ \Rightarrow 2x\ dx = - 2 a^2 \sin2\theta d\theta\]
\[ \Rightarrow x\ dx = - a^2 \sin2\theta d\theta\]
\[When\, x \to 0 ; \theta \to \frac{\pi}{4} and\ x \to a ; \theta \to 0\]
\[\text{Now, integral becomes}
, \]
\[I = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \sqrt{\frac{a^2 - a^2 \cos2\theta}{a^2 + a^2 \cos2\theta}} d\theta\]
\[ = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \tan\theta d\theta\]
\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin\theta \cos\theta \frac{\sin\theta}{\cos\theta} d\theta\]
\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin^2 \theta d\theta\]
\[ = a^2 \int_0^\frac{\pi}{4} \left[ 1 - \cos 2\theta \right] d\theta\]
\[ = a^2 \left[ \theta - \frac{\sin2\theta}{2} \right]_0^\frac{\pi}{4} \]
\[ = a^2 \left[ \frac{\pi}{4} - \frac{1}{2} \right]\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`