Advertisements
Advertisements
Question
Solution
\[Let\, I = \int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
\[Consider\, x^2 = a^2 \cos2\theta\]
\[ \Rightarrow 2x\ dx = - 2 a^2 \sin2\theta d\theta\]
\[ \Rightarrow x\ dx = - a^2 \sin2\theta d\theta\]
\[When\, x \to 0 ; \theta \to \frac{\pi}{4} and\ x \to a ; \theta \to 0\]
\[\text{Now, integral becomes}
, \]
\[I = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \sqrt{\frac{a^2 - a^2 \cos2\theta}{a^2 + a^2 \cos2\theta}} d\theta\]
\[ = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \tan\theta d\theta\]
\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin\theta \cos\theta \frac{\sin\theta}{\cos\theta} d\theta\]
\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin^2 \theta d\theta\]
\[ = a^2 \int_0^\frac{\pi}{4} \left[ 1 - \cos 2\theta \right] d\theta\]
\[ = a^2 \left[ \theta - \frac{\sin2\theta}{2} \right]_0^\frac{\pi}{4} \]
\[ = a^2 \left[ \frac{\pi}{4} - \frac{1}{2} \right]\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Solve each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int x^3/(x + 1)` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.