English

A ∫ 0 X √ a 2 − X 2 a 2 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

Solution

\[Let\, I = \int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[Consider\, x^2 = a^2 \cos2\theta\]

\[ \Rightarrow 2x\ dx = - 2 a^2 \sin2\theta d\theta\]

\[ \Rightarrow x\ dx = - a^2 \sin2\theta d\theta\]

\[When\, x \to 0 ; \theta \to \frac{\pi}{4} and\ x \to a ; \theta \to 0\]

\[\text{Now, integral becomes}
, \]

\[I = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \sqrt{\frac{a^2 - a^2 \cos2\theta}{a^2 + a^2 \cos2\theta}} d\theta\]

\[ = \int_\frac{\pi}{4}^0 - a^2 \sin2\theta \tan\theta d\theta\]

\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin\theta \cos\theta \frac{\sin\theta}{\cos\theta} d\theta\]

\[ = a^2 \int_0^\frac{\pi}{4} 2 \sin^2 \theta d\theta\]

\[ = a^2 \int_0^\frac{\pi}{4} \left[ 1 - \cos 2\theta \right] d\theta\]

\[ = a^2 \left[ \theta - \frac{\sin2\theta}{2} \right]_0^\frac{\pi}{4} \]

\[ = a^2 \left[ \frac{\pi}{4} - \frac{1}{2} \right]\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 54 | Page 40

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


`int x^3/(x + 1)` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×