Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\infty \frac{1}{a^2 + b^2 x^2} d x\ . Then, \]
\[I = \frac{1}{a^2} \int_0^\infty \frac{1}{1 + \frac{b^2 x^2}{a^2}} d x\]
\[ \Rightarrow I = \frac{1}{a^2} \int_0^\infty \frac{1}{1 + \left( \frac{bx}{a} \right)^2} d x\]
\[ \Rightarrow I = \frac{a}{b a^2} \left[ \tan^{- 1} \left( \frac{bx}{a} \right) \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{ab}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{2ab}\]
APPEARS IN
RELATED QUESTIONS
Solve each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: