English

1 ∫ 0 Tan − 1 ( 2 X 1 − X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

Sum

Solution

\[\int_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) d x\]

\[Let, x = \tan\theta,\text{ then }dx = se c^2 \theta d\theta\]

\[\text{When, }x \to 0 ; \theta \to 0\]

\[\text{And }x \to 1 ; \theta \to \frac{\pi}{4}\]

Therefore the integral becomes

\[ \int_0^\frac{\pi}{4} \tan^{- 1} \left( \frac{2\tan\theta}{1 - \tan^2 \theta} \right) se c^2 \theta d\theta\]

\[ = \int_0^\frac{\pi}{4} \tan^{- 1} \left( \tan2\theta \right) se c^2 \theta d\theta\]

\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]

\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]

\[ = 2 \left[ \theta \tan\theta \right]_0^\frac{\pi}{4} - 2 \left[ - \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]

\[\]

\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]

\[ = \frac{\pi}{2} - \log2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 7 | Page 121

RELATED QUESTIONS

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_2^3 e^{- x} dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

Γ(n) is


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×