English

2 π ∫ 0 E X Cos ( π 4 + X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

Solution

\[Let\ I = \int_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - \int_0^{2\pi} 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\text{Integrating second term by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left\{ \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \int_0^{2\pi} - 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) d x \right\}\]
\[ \Rightarrow I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - 4I\]
\[ \Rightarrow 5I = - 2 e^{2\pi} \frac{1}{\sqrt{2}} - 2 \frac{1}{\sqrt{2}} - 4 e^{2\pi} \frac{1}{\sqrt{2}} - 4 \frac{1}{\sqrt{2}}\]
\[ \Rightarrow 5I = - 3\sqrt{2} e^{2\pi} - 3\sqrt{2}\]
\[ \Rightarrow I = - \frac{3\sqrt{2}}{5}\left( e^{2\pi} + 1 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 52 | Page 17

RELATED QUESTIONS

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int_0^1 | x\sin \pi x | dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×