Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - \int_0^{2\pi} 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
\[\text{Integrating second term by parts}\]
\[I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left\{ \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \int_0^{2\pi} - 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) d x \right\}\]
\[ \Rightarrow I = \left[ 2 e^x \sin \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} + \left[ 4 e^x \cos \left( \frac{\pi}{4} + \frac{x}{2} \right) \right]_0^{2\pi} - 4I\]
\[ \Rightarrow 5I = - 2 e^{2\pi} \frac{1}{\sqrt{2}} - 2 \frac{1}{\sqrt{2}} - 4 e^{2\pi} \frac{1}{\sqrt{2}} - 4 \frac{1}{\sqrt{2}}\]
\[ \Rightarrow 5I = - 3\sqrt{2} e^{2\pi} - 3\sqrt{2}\]
\[ \Rightarrow I = - \frac{3\sqrt{2}}{5}\left( e^{2\pi} + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
If f(2a − x) = −f(x), prove that
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.