Advertisements
Advertisements
Question
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Solution
\[\int_0^\pi \frac{1}{6 - \cos x} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{6 + 6 \tan^2 \frac{x}{2} - 1 + \tan^2 \frac{x}{2}} d x\]
\[ = \int_0^\pi \frac{se c^2 \frac{x}{2}}{5 + 7 \tan^2 \frac{x}{2}}dx\]
\[Let, \tan\frac{x}{2} = t, then \frac{1}{2}se c^2 \frac{x}{2} dx = dt\]
Therefore the integral becomes
\[ \int_0^\infty \frac{2dt}{5 + 7 t^2} \]
\[ = \frac{2}{7} \int_0^\infty \frac{dt}{\frac{5}{7} + t^2} \]
\[ = \frac{2}{\sqrt{35}} \left[ \tan^{- 1} \frac{\sqrt{7}t}{\sqrt{5}} \right]_0^\infty \]
\[ = \frac{\pi}{\sqrt{35}}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Find: `int logx/(1 + log x)^2 dx`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`