Advertisements
Advertisements
Question
Find: `int logx/(1 + log x)^2 dx`
Solution
`int logx/(1 + log x)^2 dx = int (log x + 1 - 1)/(1 + log x)^2 dx`
= `int 1/(1 + log x) dx - int 1/(1 + log x)^2 dx`
= `1/(1 + log x) xx x - int (-1)/(1 + log x)^2 xx 1/x xx xdx - int 1/(1 + log x)^2 dx`
= ` x/(1 + log x) + c`
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.