Advertisements
Advertisements
Question
Solution
\[I = \int_1^2 \left( \frac{x}{x\left( x + 2 \right)} + \frac{3}{x\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = \int_1^2 \frac{dx}{\left( x + 2 \right)} + \int_1^2 \frac{3}{x\left( x + 2 \right)} d x\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \int_1^2 \left( \frac{1}{x} - \frac{1}{x + 2} \right) dx\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \left[ \log x - \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ \log 2 - \log 4 - 0 + \log 3 \right]\]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ - \log 2 + \log 3 \right]\]
\[ \Rightarrow I = 2 \log 2 - \log 3 + \frac{3}{2} \log 3 - \frac{3}{2} \log 2\]
\[ \Rightarrow I = \frac{1}{2} \log 2 + \frac{1}{2} \log 3\]
\[ \Rightarrow I = \frac{1}{2}\left( \log 2 + \log 3 \right)\]
\[ \Rightarrow I = \frac{1}{2} \log 6\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f(x) is a continuous function defined on [−a, a], then prove that
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`Γ(3/2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.