Advertisements
Advertisements
Question
If f(x) is a continuous function defined on [−a, a], then prove that
Solution
\[Let\ I = \int_{- a}^a f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_{- a}^0 f\left( x \right) d x + \int_0^a f\left( x \right) d x\]
\[Let x = - t, then\ dx = - dt, \]
\[When\ x = - a, t = a, x = 0, t = 0\]
\[Hence\ \int_{- a}^0 f\left( x \right) d x = - \int_a^0 f\left( - t \right) d t\]
\[ = \int_0^a f\left( - t \right) d t = \int_0^a f\left( - x \right) dx .......................\left( \text{Changing the variable} \right)\]
Therefore,
\[I = \int_0^a f\left( - x \right) d x + \int_0^a f\left( x \right) d x\]
\[ = \int_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
\[\text{Hence, proved} .\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.