Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) d x . Then, \]
\[ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \left( 1 - \cos^2 x \right) \right) d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \left( a^2 - b^2 \right) \cos^2 x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \frac{\left( a^2 - b^2 \right)\left( 1 + \cos 2x \right)}{2} \right)dx\]
\[ \Rightarrow I = \left[ b^2 x + \frac{a^2 - b^2}{2}\left( x + \frac{\sin 2x}{2} \right) \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{b^2 \pi}{2} + \frac{a^2 - b^2}{2}\frac{\pi}{2} + 0\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a^2 + b^2 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate :
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.