English

Π / 2 ∫ 0 ( a 2 Cos 2 X + B 2 Sin 2 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) d x . Then, \]
\[ I = \int_0^\frac{\pi}{2} \left( a^2 \cos^2 x + b^2 \left( 1 - \cos^2 x \right) \right) d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \left( a^2 - b^2 \right) \cos^2 x \right) dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( b^2 + \frac{\left( a^2 - b^2 \right)\left( 1 + \cos 2x \right)}{2} \right)dx\]
\[ \Rightarrow I = \left[ b^2 x + \frac{a^2 - b^2}{2}\left( x + \frac{\sin 2x}{2} \right) \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{b^2 \pi}{2} + \frac{a^2 - b^2}{2}\frac{\pi}{2} + 0\]
\[ \Rightarrow I = \frac{\pi}{4}\left( a^2 + b^2 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 23 | Page 16

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×