Advertisements
Advertisements
Question
Solution
We have,
\[ I = \int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} d x\]
Putting \[x = a \sin \theta\]
\[ \Rightarrow dx = a \cos \theta d\theta\]
\[\text{When }x \to 0; \theta \to 0 \]
\[\text{And }x \to a; \theta \to \frac{\pi}{2}\]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - \left( a \sin \theta \right)^2}}d\theta\]
\[ = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + a \cos \theta}d\theta\]
\[I = \int_0^\frac{\pi}{2} \frac{\cos \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos \left( \frac{\pi}{2} - \theta \right)}{\sin \left( \frac{\pi}{2} - \theta \right) + \cos \left( \frac{\pi}{2} - \theta \right)}d\theta\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\cos \theta + \sin \theta}d\theta\]
\[I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 2 \right)\]
\[\text{By adding (1) and (2), we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{\cos \theta + \sin \theta}{\sin \theta + \cos \theta}d\theta \]
\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} d\theta \]
\[ \Rightarrow 2I = \left[ \theta \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.