English

A ∫ 0 1 X + √ a 2 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]
Sum

Solution

We have, 

\[ I = \int_0^a \frac{1}{x + \sqrt{a^2 - x^2}} d x\]

Putting \[x = a \sin \theta\]

\[ \Rightarrow dx = a \cos \theta d\theta\]

\[\text{When }x \to 0; \theta \to 0 \]

\[\text{And }x \to a; \theta \to \frac{\pi}{2}\]

\[ \therefore I = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + \sqrt{a^2 - \left( a \sin \theta \right)^2}}d\theta\]

\[ = \int_0^\frac{\pi}{2} \frac{a \cos \theta}{a \sin \theta + a \cos \theta}d\theta\]

\[I = \int_0^\frac{\pi}{2} \frac{\cos \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 1 \right)\]

\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos \left( \frac{\pi}{2} - \theta \right)}{\sin \left( \frac{\pi}{2} - \theta \right) + \cos \left( \frac{\pi}{2} - \theta \right)}d\theta\]

\[ = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\cos \theta + \sin \theta}d\theta\]

\[I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sin \theta + \cos \theta}d\theta . . . . . \left( 2 \right)\]

\[\text{By adding (1) and (2), we get}\]

\[2I = \int_0^\frac{\pi}{2} \frac{\cos \theta + \sin \theta}{\sin \theta + \cos \theta}d\theta \]

\[ \Rightarrow 2I = \int_0^\frac{\pi}{2} d\theta \]

\[ \Rightarrow 2I = \left[ \theta \right]_0^\frac{\pi}{2} \]

\[ \Rightarrow 2I = \frac{\pi}{2}\]

\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 7 | Page 95

RELATED QUESTIONS

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×