Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} d x ................(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx.....................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx\right]\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{cotx}} d x .................(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{cotx}} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{\left( 1 + \sqrt{\tan x} \right) \left( 1 + \sqrt{cotx} \right)} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{1 + \sqrt{cotx} + \sqrt{\tan x} + \sqrt{\tan x \ cotx}} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left[ x \right]_0^\frac{\pi}{2} \]
\[ = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate each of the following integral:
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`