English

Π / 2 ∫ 0 1 1 + √ Tan X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
Sum

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} d x ................(1)\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan\left( \frac{\pi}{2} - x \right)}} dx.....................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx\right]\]

\[ = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{cotx}} d x .................(2)\]

\[\text{Adding (1) and (2) we get}\]

\[2I = \int_0^\frac{\pi}{2} \frac{1}{1 + \sqrt{\tan x}} + \frac{1}{1 + \sqrt{cotx}} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{\left( 1 + \sqrt{\tan x} \right) \left( 1 + \sqrt{cotx} \right)} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{1 + \sqrt{cotx} + 1 + \sqrt{\tan x}}{1 + \sqrt{cotx} + \sqrt{\tan x} + \sqrt{\tan x \ cotx}} dx\]

\[ = \int_0^\frac{\pi}{2} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} dx\]

\[ = \int_0^\frac{\pi}{2} dx \]

\[ = \left[ x \right]_0^\frac{\pi}{2} \]

\[ = \frac{\pi}{2}\]

\[Hence\ I = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 94]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 6 | Page 94

RELATED QUESTIONS

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_a^b x\ dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×