Advertisements
Advertisements
Question
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Solution
\[\int_a^b xf\left( x \right)dx\]
\[ = \int_a^b \left( a + b - x \right)f\left( a + b - x \right)dx ..................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_a^b \left( a + b - x \right)f\left( x \right)dx ..................\left[ f\left( a + b - x \right) = f\left( x \right) \right]\]
\[ \therefore \int_a^b xf\left( x \right)dx = \int_a^b \left( a + b \right)f\left( x \right)dx - \int_a^b xf\left( x \right)dx\]
\[\Rightarrow \int_a^b xf\left( x \right)dx + \int_a^b xf\left( x \right)dx = \left( a + b \right) \int_a^b f\left( x \right)dx\]
\[ \Rightarrow 2 \int_a^b xf\left( x \right)dx = \left( a + b \right) \int_a^b f\left( x \right)dx\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`