Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_1^2 \frac{x}{\left( x + 1 \right)\left( x + 2 \right)} d\ x\ . Then, \]
\[I = \int_1^2 \left( \frac{- 1}{\left( x + 1 \right)} + \frac{2}{\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = - \int_1^2 \frac{1}{\left( x + 1 \right)} dx + 2 \int_1^2 \frac{1}{\left( x + 2 \right)} dx\]
\[ \Rightarrow I = \left[ - \log \left( x + 1 \right) + 2 \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = - \log 3 + 2 \log 4 + \log 2 - 2 \log 3\]
\[ \Rightarrow I = 5 \log 2 - 3 \log 3\]
\[ \Rightarrow I = \log 2^5 - \log 3^3 \]
\[ \Rightarrow I = \log \frac{32}{27}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`