Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right], \]
\[\text{where, }h = \frac{b - a}{n}\]
\[Here, a = 0, b = 3, f\left( x \right) = x + 4, h = \frac{3 - 0}{n} = \frac{3}{n}\]
\[\text{Therefore, }I = \int_0^3 \left( x + 4 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . + f\left( 0 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 4 \right) + \left( h + 4 \right) + . . . . . . . + \left( \left( n - 1 \right)h + 4 \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\left( 1 + 2 + . . . . . . . + \left( n - 1 \right) \right) \right]\]
\[ = \lim_{h \to 0} h\left[ 4n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ 4n + \frac{3}{n} \times \frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \left[ 12 + \frac{9}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 12 + \frac{9}{2} = \frac{33}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`Γ (9/2)`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`