Advertisements
Advertisements
Question
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
Solution
The given definite integral = `int_(-1)^2|x(x - 1)(x - 2)|dx`
= `int_(-1)^0 |x(x - 1)(x - 2)|dx + int_0^1 |x(x - 1)(x - 2)|dx + int_1^2 |x(x - 1)(x - 2)|dx`
= `- int_(-1)^0 (x^3 - 3x^2 + 2x)dx + int_0^1 (x^3 - 3x^2 + 2x)dx - int_1^2 (x^3 - 3x^2 + 2x)dx`
= `- [x^4/4 - x^3 + x^2]_(-1)^0 + [x^4/4 - x^3 + x^2]_0^1 - [x^4/4 - x^3 + x^2]_1^2`
= `9/4 + 1/4 + 1/4 = 11/4`
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.