Advertisements
Advertisements
Question
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Solution
We have,
\[I = \int\limits_0^{1 . 5} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left[ x^2 \right] dx + \int\limits_1^\sqrt{2} \left[ x^2 \right] dx + \int\limits_\sqrt{2}^{1 . 5} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left( 0 \right) dx + \int\limits_1^\sqrt{2} \left( 1 \right) dx + \int\limits_\sqrt{2}^{1 . 5} \left( 2 \right) dx ..............\left(\because \left[ x^2 \right] = \begin{cases}0 &where,& 0 < x < 1 \\ 1 &where,& 1 < x < \sqrt{2}\\2 &where,& \sqrt{2} < x < 1.5 \end{cases}\right)\]
\[ = 0 + \left[ x \right]_1^\sqrt{2} + \left[ 2x \right]_\sqrt{2}^{1 . 5} \]
\[ = \left[ x \right]_1^\sqrt{2} + 2 \left[ x \right]_\sqrt{2}^{1 . 5} \]
\[ = \left( \sqrt{2} - 1 \right) + 2\left( 1 . 5 - \sqrt{2} \right)\]
\[ = \sqrt{2} - 1 + 3 - 2\sqrt{2}\]
\[ = 2 - \sqrt{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f(2a − x) = −f(x), prove that
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.