English

1 ∫ 0 Cos − 1 ( 1 − X 2 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]

Sum

Solution

\[\int_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) d x\]

\[Let, x = \tan\theta, dx = se c^2 \theta d\theta\]

\[\text{When, }x \to 0 ; \theta \to 0\]

\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]

Therefore, the integral becomes

\[ \int_0^\frac{\pi}{4} \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) se c^2 \theta d\theta\]

\[ = \int_0^\frac{\pi}{4} \cos^{- 1} \left( \cos2\theta \right) se c^2 \theta d\theta\]

\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]

\[ = 2 \left[ \theta tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]

\[ = 2 \left[ \theta \tan\ theta \right]_0^\frac{\pi}{4} + 2 \left[ \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]

\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]

\[ = \frac{\pi}{2} - \log2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 6 | Page 121

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]


Evaluate the following:

Γ(4)


Choose the correct alternative:

`Γ(3/2)`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×