Advertisements
Advertisements
Question
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
Solution
\[\int_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) d x\]
\[Let, x = \tan\theta, dx = se c^2 \theta d\theta\]
\[\text{When, }x \to 0 ; \theta \to 0\]
\[\text{and }x \to 1 ; \theta \to \frac{\pi}{4}\]
Therefore, the integral becomes
\[ \int_0^\frac{\pi}{4} \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) se c^2 \theta d\theta\]
\[ = \int_0^\frac{\pi}{4} \cos^{- 1} \left( \cos2\theta \right) se c^2 \theta d\theta\]
\[ = 2 \int_0^\frac{\pi}{4} \theta se c^2 \theta d\theta\]
\[ = 2 \left[ \theta tan\theta \right]_0^\frac{\pi}{4} - 2 \int_0^\frac{\pi}{4} \tan\theta d\theta\]
\[ = 2 \left[ \theta \tan\ theta \right]_0^\frac{\pi}{4} + 2 \left[ \log\left( \cos\theta \right) \right]_0^\frac{\pi}{4} \]
\[ = 2\left( \frac{\pi}{4} - 0 \right) + 2\left[ \log\frac{1}{\sqrt{2}} - 0 \right]\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
RELATED QUESTIONS
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following:
Γ(4)
Choose the correct alternative:
`Γ(3/2)`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.