English

Π ∫ 0 X Log Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi x \log \sin x\ dx\]

Solution

\[\int_0^\pi x \log \sin x\ d x\]
\[Let I = \int_0^\pi x \log\left( \sin x \right) d\ x . . . . . (i)\]
\[ I = \int_0^\pi \left( \pi - x \right) \log \sin\left( \pi - x \right) d x\]
\[ I = \int_0^\pi \left( \pi - x \right) \log\left( \sin x \right) dx . . . . . (ii)\]
\[\text{Adding (i) and (ii)}\]
\[2I = \pi \int_0^\pi \log \sin x\ d x\]
\[ = 2\pi \int_0^\frac{\pi}{2} \log \sin x\ d x\]
\[ I = \pi \int_0^\frac{\pi}{2} \log \sin x\ d x . . . . . (iii)\]
\[Let\ \int_0^\frac{\pi}{2} \log \sin x dx = I_2 \]
\[ I_2 = \int_0^\frac{\pi}{2} \log \sin\left( \frac{\pi}{2} - x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log \cos x dx\]
\[2 I_2 = \int_0^\frac{\pi}{2} \left( \log \sin x + \log \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin x \cos x \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log\left( \sin2x \right) dx - \int_0^\frac{\pi}{2} \log 2 dx\]
\[Let\ 2x = t\]
\[2dx = dt\]
\[when, \]
\[x = 0 \Rightarrow t = 0\]
\[x = 0 \Rightarrow t = \pi\]
\[2 I_2 = \frac{1}{2} \int_0^\pi \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = \frac{2}{2} \int_0^\frac{\pi}{2} \log \left( \sin t \right) dt - \frac{\pi}{2}\log 2\]
\[2 I_2 = I_2 - \frac{\pi}{2}\log 2\]
\[ I_2 = - \frac{\pi}{2}\log 2\]
\[From \left( iii \right), \]
\[ I = \pi \int_0^\frac{\pi}{2} \log\ sinx\ dx = \pi I_2 \]
\[I = \pi\left( - \frac{\pi}{2}\log 2 \right)\]
\[I = \frac{- \pi^2 \log 2}{2}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 14 | Page 95

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×