Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \sqrt{1 + \cos x}\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sqrt{1 + \cos x} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 - \cos x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{1 - \cos x}} dx\]
\[Let 1 - \cos x = u\]
\[ \Rightarrow \sin x\ dx\ = du\]
\[ \therefore I = \int\frac{du}{\sqrt{u}}\]
\[ \Rightarrow I = \left[ 2\sqrt{u} \right]\]
\[ \Rightarrow I = \left[ 2\sqrt{1 - \cos x} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 2 - 0\]
\[ \Rightarrow I = 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.