English

2 ∫ 1 X √ 3 X − 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]

Sum

Solution

\[\int_1^2 x\sqrt{3x - 2} d x\]

\[Let, 3x - 2 = t,\text{ then }3dx = dt\]

\[\text{when, }x = 1 ; t = 1\text{ and }x = 2 ; t = 4\]

\[\text{Therefore the integral becomes}\]

\[ \int_1^4 \frac{t + 2}{3}\sqrt{t} \frac{dt}{3}\]

\[ = \frac{1}{9} \int_1^4 t^\frac{3}{2} + 2\sqrt{t} dt\]

\[ = \frac{1}{9} \left[ \frac{2 t^\frac{5}{2}}{5} + \frac{4 t^\frac{3}{2}}{3} \right]_1^4 \]

\[ = \frac{1}{9}\left[ \frac{64}{5} + \frac{32}{3} - \frac{2}{5} - \frac{4}{3} \right]\]

\[ = \frac{46}{135}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 2 | Page 121

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×