Advertisements
Advertisements
Question
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
Solution
\[\int_1^2 x\sqrt{3x - 2} d x\]
\[Let, 3x - 2 = t,\text{ then }3dx = dt\]
\[\text{when, }x = 1 ; t = 1\text{ and }x = 2 ; t = 4\]
\[\text{Therefore the integral becomes}\]
\[ \int_1^4 \frac{t + 2}{3}\sqrt{t} \frac{dt}{3}\]
\[ = \frac{1}{9} \int_1^4 t^\frac{3}{2} + 2\sqrt{t} dt\]
\[ = \frac{1}{9} \left[ \frac{2 t^\frac{5}{2}}{5} + \frac{4 t^\frac{3}{2}}{3} \right]_1^4 \]
\[ = \frac{1}{9}\left[ \frac{64}{5} + \frac{32}{3} - \frac{2}{5} - \frac{4}{3} \right]\]
\[ = \frac{46}{135}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`