Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Solution
We have,
\[I = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\sin x + \cos x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\cos x + \sin x} dx ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sin^2 x}{\sin x + \cos x} + \frac{\cos^2 x}{\cos x + \sin x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore 2I = \int_0^1 \frac{2dt}{2t + 1 - t^2} dx\]
\[ = 2 \int_0^1 \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]
\[ = \frac{2}{2\sqrt{2}} \left[ \log\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| \right]_0^1 \]
\[ = \frac{1}{\sqrt{2}}\left[ \log\left( \frac{\sqrt{2}}{\sqrt{2}} \right) - log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right] \]
\[ = \frac{1}{\sqrt{2}}\left[ 0 - \log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right]\]
\[ = - \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right|\]
\[ = \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right|\]
\[ = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]
\[2I = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{2 - 1} \right]\]
\[2I = \frac{2}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
\[\text{Hence }I = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f is an integrable function, show that
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Find : `∫_a^b logx/x` dx
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.