Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where} h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 3, f\left( x \right) = 2 x^2 + 3x + 5, h = \frac{3 - 0}{n} = \frac{3}{n}\]
Therefore,
\[I = \int_0^3 \left( 2 x^2 + 3x + 5 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 + 5 \right) + \left( 2 h^2 + 3h + 5 \right) + . . . . . . . . . . . . . . . + \left\{ 2 \left( n - 1 \right)^2 h^2 + 3\left( n - 1 \right)h + 5 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5n + 2 h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + 3h\left\{ 1 + 2 + . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5n + 2 h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 3h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{3}{n}\left[ 5n + \frac{3\left( n - 1 \right)\left( 2n - 1 \right)}{n} + \frac{9\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} 3\left[ 5 + 3\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + \frac{9}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 15 + 18 + \frac{27}{2}\]
\[ = \frac{93}{3}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f(x) is a continuous function defined on [−a, a], then prove that
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`