Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d \theta . \]
\[Let\ \cos\ \theta = t . Then, - \sin\ \theta\ d\theta\ = dt\]
\[When\ \theta = 0, t = 1\ and\ \theta = \frac{\pi}{2}, t = 0\]
\[ \therefore I = \int_0^\frac{\pi}{2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d \theta\]
\[ = \int_1^0 \frac{- dt}{\sqrt{1 + t}}\]
\[ = \int_0^1 \frac{dt}{\sqrt{1 + t}}\]
\[ = 2 \left[ \sqrt{1 + t} \right]_0^1 \]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`