Advertisements
Advertisements
Question
Solution
\[\text{Let I }=\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
\[= \int_0^\frac{\pi}{2} \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^{n - 1}}dx\]
Put
\[\therefore \left( - \sin\frac{x}{2} \times \frac{1}{2} + \cos\frac{x}{2} \times \frac{1}{2} \right)dx = dz\]
\[ \Rightarrow \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)dx = 2dz\]
When
When
\[x \to \frac{\pi}{2}, z \to \sqrt{2} ..................\left( z = \cos\frac{\pi}{4} + \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \right)\]
\[\therefore I = 2 \int_1^\sqrt{2} \frac{dz}{z^{n - 1}}\]
\[ = \left.2 \times \frac{z^{2 - n}}{2 - n}\right|_1^\sqrt{2} \]
\[ = \frac{2}{\left( 2 - n \right)}\left[ \left( \sqrt{2} \right)^{2 - n} - 1 \right]\]
\[ = \frac{2}{\left( 2 - n \right)}\left( 2^\frac{2 - n}{2} - 1 \right)\]
\[ = \frac{2}{\left( 2 - n \right)}\left( 2^{1 - \frac{n}{2}} - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Prove that:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: