English

∫ π 2 − π 4 Sin X | Sin X | D X - Mathematics

Advertisements
Advertisements

Question

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 

Sum

Solution

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left| \sin x \right|dx + \int_0^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left( - \sin x \right)dx + \int_0^\frac{\pi}{2} \sin x\sin xdx ...................\left( \left| \sin x \right| = \begin{cases}\sin x, & 0 \leq x \leq \frac{\pi}{2} \\ - \sin x, & - \frac{\pi}{4} \leq x \leq 0\end{cases} \right)\]

\[ = - \int_{- \frac{\pi}{4}}^0 \sin^2 xdx + \int_0^\frac{\pi}{2} \sin^2 xdx\]

\[= - \int_{- \frac{\pi}{4}}^0 \frac{1 - \cos2x}{2}dx + \int_0^\frac{\pi}{2} \frac{1 - \cos2x}{2}dx\]

\[ = - \frac{1}{2} \int_{- \frac{\pi}{4}}^0 dx + \frac{1}{2} \int_{- \frac{\pi}{4}}^0 \cos2xdx + \frac{1}{2} \int_0^\frac{\pi}{2} dx - \frac{1}{2} \int_0^\frac{\pi}{2} \cos2xdx\]

\[ = \left.- \frac{1}{2} \times x\right|_{- \frac{\pi}{4}}^0 +\left. \frac{1}{2} \times \frac{\sin2x}{2}\right|_{- \frac{\pi}{4}}^0 + \left.\frac{1}{2} \times x\right|_0^\frac{\pi}{2} - \left.\frac{1}{2} \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{2} \]

\[ = - \frac{1}{2}\left( 0 + \frac{\pi}{4} \right) + \frac{1}{4}\left( 0 + \sin\frac{\pi}{2} \right) + \frac{1}{2} \times \left( \frac{\pi}{2} - 0 \right) - \frac{1}{4}\left( sin\pi - 0 \right)\]

\[ = - \frac{\pi}{8} + \frac{1}{4}\left( 0 + 1 \right) + \frac{\pi}{4} - \frac{1}{4}\left( 0 - 0 \right)\]

\[ = \frac{\pi}{8} + \frac{1}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 22 | Page 56

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×