Advertisements
Advertisements
Question
Solution
\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]
\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left| \sin x \right|dx + \int_0^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]
\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left( - \sin x \right)dx + \int_0^\frac{\pi}{2} \sin x\sin xdx ...................\left( \left| \sin x \right| = \begin{cases}\sin x, & 0 \leq x \leq \frac{\pi}{2} \\ - \sin x, & - \frac{\pi}{4} \leq x \leq 0\end{cases} \right)\]
\[ = - \int_{- \frac{\pi}{4}}^0 \sin^2 xdx + \int_0^\frac{\pi}{2} \sin^2 xdx\]
\[= - \int_{- \frac{\pi}{4}}^0 \frac{1 - \cos2x}{2}dx + \int_0^\frac{\pi}{2} \frac{1 - \cos2x}{2}dx\]
\[ = - \frac{1}{2} \int_{- \frac{\pi}{4}}^0 dx + \frac{1}{2} \int_{- \frac{\pi}{4}}^0 \cos2xdx + \frac{1}{2} \int_0^\frac{\pi}{2} dx - \frac{1}{2} \int_0^\frac{\pi}{2} \cos2xdx\]
\[ = \left.- \frac{1}{2} \times x\right|_{- \frac{\pi}{4}}^0 +\left. \frac{1}{2} \times \frac{\sin2x}{2}\right|_{- \frac{\pi}{4}}^0 + \left.\frac{1}{2} \times x\right|_0^\frac{\pi}{2} - \left.\frac{1}{2} \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{2} \]
\[ = - \frac{1}{2}\left( 0 + \frac{\pi}{4} \right) + \frac{1}{4}\left( 0 + \sin\frac{\pi}{2} \right) + \frac{1}{2} \times \left( \frac{\pi}{2} - 0 \right) - \frac{1}{4}\left( sin\pi - 0 \right)\]
\[ = - \frac{\pi}{8} + \frac{1}{4}\left( 0 + 1 \right) + \frac{\pi}{4} - \frac{1}{4}\left( 0 - 0 \right)\]
\[ = \frac{\pi}{8} + \frac{1}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`