हिंदी

∫ π 2 − π 4 Sin X | Sin X | D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 

योग

उत्तर

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left| \sin x \right|dx + \int_0^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

\[ = \int_{- \frac{\pi}{4}}^0 \sin x\left( - \sin x \right)dx + \int_0^\frac{\pi}{2} \sin x\sin xdx ...................\left( \left| \sin x \right| = \begin{cases}\sin x, & 0 \leq x \leq \frac{\pi}{2} \\ - \sin x, & - \frac{\pi}{4} \leq x \leq 0\end{cases} \right)\]

\[ = - \int_{- \frac{\pi}{4}}^0 \sin^2 xdx + \int_0^\frac{\pi}{2} \sin^2 xdx\]

\[= - \int_{- \frac{\pi}{4}}^0 \frac{1 - \cos2x}{2}dx + \int_0^\frac{\pi}{2} \frac{1 - \cos2x}{2}dx\]

\[ = - \frac{1}{2} \int_{- \frac{\pi}{4}}^0 dx + \frac{1}{2} \int_{- \frac{\pi}{4}}^0 \cos2xdx + \frac{1}{2} \int_0^\frac{\pi}{2} dx - \frac{1}{2} \int_0^\frac{\pi}{2} \cos2xdx\]

\[ = \left.- \frac{1}{2} \times x\right|_{- \frac{\pi}{4}}^0 +\left. \frac{1}{2} \times \frac{\sin2x}{2}\right|_{- \frac{\pi}{4}}^0 + \left.\frac{1}{2} \times x\right|_0^\frac{\pi}{2} - \left.\frac{1}{2} \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{2} \]

\[ = - \frac{1}{2}\left( 0 + \frac{\pi}{4} \right) + \frac{1}{4}\left( 0 + \sin\frac{\pi}{2} \right) + \frac{1}{2} \times \left( \frac{\pi}{2} - 0 \right) - \frac{1}{4}\left( sin\pi - 0 \right)\]

\[ = - \frac{\pi}{8} + \frac{1}{4}\left( 0 + 1 \right) + \frac{\pi}{4} - \frac{1}{4}\left( 0 - 0 \right)\]

\[ = \frac{\pi}{8} + \frac{1}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 22 | पृष्ठ ५६

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×