Advertisements
Advertisements
प्रश्न
Evaluate each of the following integral:
उत्तर
\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]
\[ = - \int_0^\frac{\pi}{2} e^x \left[ \cos x + \left( - \sin x \right) \right]dx\]
\[ = \left.- {e^x \cos x}\right|_0^\frac{\pi}{2} .............\left\{ \int e^x \left[ f\left( x \right) + f'\left( x \right) \right]dx = e^x f\left( x \right) + C \right\}\]
\[ = - \left( e^\frac{\pi}{2} \cos\frac{\pi}{2} - e^0 \cos0 \right)\]
\[ = - \left( e^\frac{\pi}{2} \times 0 - 1 \times 1 \right)\]
\[ = - \left( 0 - 1 \right)\]
\[ = 1\]
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Find: `int logx/(1 + log x)^2 dx`